Nanofibrous Biologic Laminates Replicate the Form and Function of the Annulus Fibrosus

نویسندگان

  • Nandan L. Nerurkar
  • Brendon M. Baker
  • Sounok Sen
  • Emily E. Wible
  • Dawn M. Elliott
  • Robert L. Mauck
چکیده

Successful engineering of load-bearing tissues requires recapitulation of their complex mechanical functions. Given the intimate relationship between function and form, biomimetic materials that replicate anatomic form are of great interest for tissue engineering applications. However, for complex tissues such as the annulus fibrosus, scaffolds have failed to capture their multi-scale structural hierarchy. Consequently, engineered tissues have yet to reach functional equivalence with their native counterparts. Here, we present a novel strategy for annulus fibrosus tissue engineering that replicates this hierarchy with anisotropic nanofibrous laminates seeded with mesenchymal stem cells. These scaffolds directed the deposition of an organized, collagen-rich extracellular matrix that mimicked the angle-ply, multi-lamellar architecture and achieved mechanical parity with native tissue after 10 weeks of in vitro culture. Furthermore, we identified a novel role for inter-lamellar shearing in reinforcing the tensile response of biologic laminates, a mechanism that has not previously been considered for these tissues.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Shear Mechanics of Electrospun Scaffold for Annulus Fibrosus Tissue Engineering

INTRODUCTION Engineering functional replacements for the annulus fibrosus (AF) is contingent upon successful replication of anatomic form and mechanical function. Recently, our group and others have demonstrated the utility of electrospun scaffolds for AF tissue engineering [1]. These ordered, nanofibrous scaffolds direct cell alignment and deposition of a functional fibrocartilage matrix [1]. ...

متن کامل

Integrating Theoretical and Experimental Methods for Multi-Scale Tissue Engineering of the Annulus Fibrosus of the Intervertebral Disc

There is a critical need for tissue engineered replacements for diseased and degenerated intervertebral discs in order to assuage low back pain while restoring function to the spine. Despite progress by many research groups, it remains a challenge to engineer a replacement tissue that can withstand the complex, demanding loading environment of the spine. Due to the hierarchical organization of ...

متن کامل

Dynamic culture enhances stem cell infiltration and modulates extracellular matrix production on aligned electrospun nanofibrous scaffolds.

Electrospun nanofibrous scaffolds have become widely investigated for tissue engineering applications, owing to their ability to replicate the scale and organization of many fiber-reinforced soft tissues such as the knee meniscus, the annulus fibrosus of the intervertebral disc, tendon, and cartilage. However, due to their small pore size and dense packing of fibers, cellular ingress into elect...

متن کامل

Analysis of Selected Mechanical Properties of Intervertebral Disc Annulus Fibrosus in Macro and Microscopic Scale

The main goal of this paper is experimental analysis of selected mechanical properties of single annulus fibrosus lamellae at macroscopic and microscopic levels as well as representation and explanation of the structural response to forced deformation. The conducted analysis of single annulus fibrosus lamella with preserved natural attachments revealed two characteristic mechanisms leading to d...

متن کامل

Meniscus Tissue Engineering with Nanofibrous Scaffolds

The fibrocartilaginous menisci dwell between the articular surfaces of the knee and play a central role in joint function. Damage through trauma or degenerative changes is a common orthopaedic injury, disrupts the meniscus mechanical function, and leads to the precocious development of osteoarthritis. The current standard of treatment is removal of the damaged tissue, a procedure that does not ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2009